Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2400606, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683681

RESUMO

Emerging organic molecules with emissions in the second near-infrared (NIR-II) region are garnering significant attention. Unfortunately, achieving accountable organic emission intensity over the NIR-IIa (1300 nm) region faces challenges due to the intrinsic energy gap law. Up to the current stage, all reported organic NIR-IIa emitters belong to polymethine-based dyes with small Stokes shifts (<50 nm) and low quantum yield (QY; ≤0.015%). However, such polymethines have proved to cause self-absorption with constrained emission brightness, limiting advanced development in deep-tissue imaging. Here a new NIR-IIa scaffold based on rigid and highly conjugated dibenzofluoran core terminated by amino-containing moieties that reveal emission peaks of 1230-1305 nm is designed. The QY is at least 10 times higher than all synthesized or reported NIR-IIa polymethines with extraordinarily large Stokes shifts of 370-446 nm. DBF-BJ is further prepared as a polymer dot to demonstrate its in vivo 3D stereo imaging of mouse vasculature with a 1400 nm long-pass filter.

2.
Adv Sci (Weinh) ; 11(18): e2307391, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447200

RESUMO

Actuators utilizing snap-through instabilities are widely investigated for high-performance fast actuators and shape reconfigurable structures owing to their rapid response and limited reliance on continuous energy input. However, prevailing approaches typically involve a combination of multiple bistable actuator units and achieving multistability within a single actuator unit still remains an open challenge. Here, a soft actuator is presented that uses shape memory alloy (SMA) and mixed-mode elastic instabilities to achieve intrinsically multistable shape reconfiguration. The multistable actuator unit consists of six stable states, including two pure bending states and four bend-twist states. The actuator is composed of a pre-stretched elastic membrane placed between two elastomeric frames embedded with SMA coils. By controlling the sequence and duration of SMA activation, the actuator is capable of rapid transition between all six stable states within hundreds of milliseconds. Principles of energy minimization are used to identify actuation sequences for various types of stable state transitions. Bending and twisting angles corresponding to various prestretch ratios are recorded based on parameterizations of the actuator's geometry. To demonstrate its application in practical conditions, the multistable actuator is used to perform visual inspection in a confined space, light source tracking during photovoltaic energy harvesting, and agile crawling.

3.
Adv Mater ; 35(14): e2209408, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36574632

RESUMO

Soft materials that exhibit compliance, programmability, and reconfigurability can have a transformative impact as electronic skin for applications in wearable electronics/soft robotics. There has been significant progress in soft conductive materials; however, achieving electrically controlled and reversible changes in conductivity and circuit connectivity remains challenging. To overcome this limitation, a soft material architecture with reconfigurable conductive networks of silver flakes embedded within a hydrogel matrix is presented. The conductive networks can be reversibly created/disconnected through various stimuli, including current, humidity, or temperature. Such stimuli affect electrical connectivity of the hydrogel by controlling its water content, which can be modulated by evaporation under ambient conditions (passive dehydration), evaporation through electrical Joule heating (active dehydration), or absorption of additional water (rehydration). The resulting change in electrical conductivity is reversible and repeatable, endowing the composite with on-demand reconfigurable conductivity. To highlight this material's unique properties, it is shown that conductive traces can be reconfigured after severe damage and revert to lower conductivity after rehydration. Additionally, a quadruped robot is demonstrated that can respond to stimuli by changing direction following exposure to excess water, thereby achieving reprogrammable locomotion behaviors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...